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Figure 1. (Left) Robotic visual instruction is a hand-drawn approach for commanding robots, utilizing circles and arrows to convey task
definition. In long-horizon tasks, green and blue sketches denote the first and second task steps, respectively. (Right) It illustrates the action
sequences output via VIEW. Our method exhibits robust generalization to real-world manipulation tasks, including (a) trajectory-following
tasks, (b) cluttered environments with disturbances, and (c) multi-step operations.

Abstract

Recently, natural language has been the primary medium
for human-robot interaction. However, its inherent lack of
spatial precision for robotic control introduces challenges
such as ambiguity and verbosity. To address these limita-
tions, we introduce the Robotic Visual Instruction (RoVI),
a novel paradigm to guide robotic tasks through an object-
centric, hand-drawn symbolic representation. RoVI effec-
tively encodes spatial-temporal information into human-
interpretable visual instructions through 2D sketches, uti-
lizing arrows, circles, colors, and numbers to direct 3D
robotic manipulation. To enable robots to understand RoVI
better and generate precise actions based on RoVI, we
present Visual Instruction Embodied Workflow (VIEW), a
pipeline formulated for RoVI-conditioned policies. This ap-
proach leverages Vision-Language Models (VLMs) to inter-
pret RoVI inputs, decode spatial and temporal constraints
from 2D pixel space via keypoint extraction, and then trans-

form them into executable 3D action sequences. We ad-
ditionally curate a specialized dataset of 15K instances to
fine-tune small VLMs for edge deployment, enabling them
to effectively learn RoVI capabilities. Our approach is rig-
orously validated across 11 novel tasks in both real and sim-
ulated environments, demonstrating significant generaliza-
tion capability. Notably, VIEW achieves an 87.5% success
rate in real-world scenarios involving unseen tasks that fea-
ture multi-step actions, with disturbances, and trajectory-
following requirements. Code and Datasets in this paper
will be released soon.

1. Introduction

Natural language, is not always the optimal medium be-
tween humans and robots. Alternatively, sketching visual
instructions convey more precise spatiotemporal informa-
tion. Traditionally, communication between humans and



Figure 2. (Left) RoVI achieves an optimal balance of user-friendliness, interpretability, and spatiotemporal alignment. (Right) It shows
examples and corresponding pros and cons of four types of human-robot interaction methods.

robots relies on natural language, leveraging the advances
in large language models (LLMs) to convert verbal or tex-
tual language instructions into executable actions for robots
[7, 9, 33, 39]. While natural language is an intuitive and
convenient medium for Human-Robot Interaction (HRI), it
presents certain challenges. Specifically, natural language
has difficulty in describing spatial details such as the pre-
cise position, direction, or distance of objects [12, 23]. It
is also prone to generating ambiguity and verbosity when
expressing spatial requirements [6, 46] shown in Figure 2.
Moreover, in certain public environments, such as libraries
and hospitals, verbal communication may be inappropriate.

In contrast, visual modalities—such as goal images [14,
42, 45], trajectories [21, 48, 51], and subgoal images [32,
45]—offer a more direct and precise means of conveying
spatio-temporal information. However, the practical appli-
cation of such methods is not user-friendly shown in Figure
2. The goal image requires the input of the end state of the
robotic arm and the scene upon task completion, which con-
tradicts the user’s operational sequence. On the other hand,
the trajectory represents the complete path of the end ef-
fector from the first to the last frame, posing challenges for
users to imagine and draw the entire motion process of the
robotic arm, which reduces the overall readability for users.

To address these limitations, we propose a novel com-
munication paradigm: Robotic Visual Instruction (RoVI)
shown in the left part of Figure 1, which is a hand-drawn
sketch instruction method, an object-centric representation
that utilizes 2D symbolic language to command 3D embodi-
ments. This paradigm offers an intuitive, concise, and silent
alternative to natural language instruction. Its basic primi-
tives include arrows, circles, and various colors or numbers
to represent different temporal sequences of actions. The
arrows indicate the trajectory and direction, while the cir-
cles denote affordance location to identify target objects in
a cluttered environment. Colors or numbers clearly con-
vey the temporal sequence. By integrating these elements,
RoVI compresses a temporal series of 3D coordinates into a
human-understandable 2D visual language, thereby achiev-
ing an optimal balance of user-friendliness, interpretability,
and spatiotemporal alignment, as shown in Figure 2 left.

In order to better understand RoVI and use it to guide

robotic manipulation, we introduce Visual Instruction
Embodied Workflow (VIEW), a pipeline that transduces
two-dimensional RoVI instructions into three-dimensional
action sequences for robotic manipulation. VIEW fa-
cilitates the robotic interpretation of visual instructions,
and translates them into hierarchical language responses
and Python code functions via Vision-Language Models
(VLMs). To decode temporal information from RoVI for
high-level tasks, we decompose these tasks into multiple
single-step subtasks based on color or numerical identifiers.
Furthermore, we propose a keypoint module to extract key-
points from various RoVI components to serve as additional
spatial and temporal constraints. Ultimately, our keypoint-
conditioned policy directs the robot to execute the manipu-
lation tasks, considering both spatial and temporal informa-
tion from RoVI.

Except for the framework, we develop a dataset of 15K
training instances to enable models to learn RoVI capabil-
ities through Parameter-Efficient Fine-Tuning (PEFT) [20,
24]. Through the design outlined above, our approach per-
forms well across diverse unseen tasks in both real-world
and simulated environments, showing strong generalization
and robustness. Compared to language-conditioned poli-
cies, our method achieves superior performance in cluttered
settings, multi-step operations, and trajectory-following
tasks (see the right part of Figure 1).

1. We propose a novel human-robot interaction paradigm:
RoVI. It employs hand-drawn symbolic representations
as robotic instructions, conveying more precise spatial-
temporal information within task definition.

2. We design a pipeline, VIEW (Visual Instruction Embod-
ied Workflow), to enable RoVI-conditioned manipula-
tion tasks.

3. We develop an open-source dataset to enable models to
learn RoVI capabilities. The lightweight model trained
by this dataset demonstrates that VLMs are able to learn
this capability with minimal computational resources
and simple fine-tuning.



Figure 3. VIEW Architecture. This pipeline begins with a visual instruction drawn onto the initial observation. The VLM generates
hierarchical language-to-action outputs, including task definition, detailed planning, and executable functions. The executable functions
are then combined with keypoints extracted from the keypoint module and passed to a downstream low-level policy, which enables the
robotic arm to execute each action step-by-step. This approach bridges hand-drawn visual instructions with precise robotic actions.

2. Related Work

Human Robot Interaction. Recent advancements in
VLMs have made them a popular choice for language-
conditioned policies [3, 8, 10, 22, 27, 33]. Image-
conditioned policies are also widely explored, such as goal-
image policy [14, 32, 45], multimodal prompts [29], and
trajectory-based inputs [21, 48, 51]. One common approach
is goal-image conditioning, where a final goal image spec-
ifies the desired task’s end state. Trajectory-based policy
utilizes the full 2D or 3D trajectory of the end-effector as in-
put. However, these input methods present significant chal-
lenges for users, as it is often difficult for users to provide
such inputs directly in real-world applications.

Visual Prompting for Robot. Recent studies have ex-
plored the use of visual prompts as user input for tasks
like Visual Question Answering (VQA) [1, 11, 50]. These
models use symbolic forms of language, such as arrows,
sketches, and numbers, to assist natural language in provid-
ing more accurate VQA. However, these approaches have
primarily focused on generalized image-based question-
answering tasks, and the domain of visual prompts in
robotic manipulation tasks remains largely unexplored. In
the context of robot control, some methods use model-
generated visual prompts to guide trajectory selection for
manipulation [26, 34, 36]. Yet, they still rely on natural
language as input. These methods do not resolve the issue
with natural language instructions—specifically, the lack of
spatial intent in task definitions provided by users.

Keypoint Constraints for Manipulation. Recent stud-
ies [15, 19, 28, 31, 44] have achieved significant advance-
ments in manipulation by leveraging key points to formu-

late spatiotemporal constraints. However, unlike prior ap-
proaches that extract keypoints from environmental objects
and then filter them through VLMs reasoning [28], our
method directly extracts key points from RoVI symbols (ar-
rows and circles).

3. Robotic Visual Instruction Design
We present the paradigm design of RoVI, which consists of
two visual primitives: an arrow and a circle. All simple or
complex tasks are decomposed into three object-centric mo-
tions: moving from A to B (represented by an arrow), rotat-
ing an object (a circle indicating affordance with an arrow
for rotation degree), and picking up/selecting (represented
by a circle).

Dissecting Arrow. We use 2D arrows to denote the tra-
jectory and temporal sequence of robotic actions. An arrow
is decomposed into three components: Tail (Starting Point
p0), Shaft (Waypoints {p1, . . . , pn−1}), and Head (End-
point pn). The starting point p0 marks the grasp position
on the object, and the endpoint pn denotes the action’s goal.
Intermediate waypoints capture the movement path, form-
ing an ordered set:

Arrow = {p0, p1, . . . , pn}, pi ∈ R2, (1)

where pi are 2D coordinates extracted by a keypoint
module.

Dissecting Circle. The circle highlights key interaction
areas on objects. The center point p0 ∈ R2 represents the
affordance center and is used for various tasks: as a grasping
point, a pivot for rotation, or a pressure point for actions like
pressing buttons.



Figure 4. This is an example to demonstrate the RoVI Book
dataset, adapted from the Open-X Embodiments dataset [13]. The
bottom displays the proportion of each task type.

Drawing Setting. RoVI is drawn directly using a stylus
and drawing software on a tablet or PCs, with bright col-
ors to ensure visibility across backgrounds: green (RGB:
0, 255, 94) for first step of the manipulation task, blue
(RGB: 0, 255, 247) for the second step, and pink (RGB:
255, 106, 138) for the third step. For more steps, extra
color can be assigned flexibly. We designed two drawing
styles: Loose Style (casual, hand-drawn) and Geometric
Style (structured with geometric components for clearer in-
terpretation by VLMs). We use a circle to signify affor-
dances and replace the arrowhead with a standard triangle
as depicted in Figure 10. A comparison of their effective-
ness is in Section 6.4.

4. RoVI Book dataset

To enable VLMs to understand RoVI, we develop a dataset
for RoVI-conditioned policy, termed RoVI Book. The
dataset shown in Figure 7 comprises 15K image-text
question-answer pairs. It includes (1) images of initial
task observations annotated with RoVI, (2) simple queries
serving as default prompts, and (3) answers generated by
GPT-4o [1], covering RoVI analysis, task names, fine-
grained planning steps, and Python functions. The origi-
nal tasks and images were selected from the Open-X Em-
bodiment dataset [13]. Our dataset covers 64% single-
step tasks and 36% multi-step tasks, across five funda-
mental manipulation skills: move an object, rotate
an object, pick up, open drawers/cabinets,
and close drawers/cabinets. The answers are ini-
tially generated using GPT-4o [1] and subsequently refined
through semantic filtering based on human feedback. Each
task retains its original semantic task name from the Open-

X Embodiments [13], while we apply data augmentation to
RoVI, introducing 3–8 visual variants, varying paths, draw-
ing styles, and line thickness. Further details are provided
in the appendix.

5. Visual Instruction Embodied Workflow
5.1. Overview of Workflow
The VIEW consists of three components: (1) A VLM fθ for
RoVI understanding and planning, (2) a keypoint module
fδ for generating spatiotemporal constraints [28], and (3) a
low-level policy π for executing robot actions.

As shown in Figure 3, the pipeline begins with VLMs
that take as input the hand-drawn RoVI v ∈ RH×W×3, an
initial observation image X ∈ RH×W×3, and a system-
provided default prompt (further details on the default
prompt can be found in the appendix). The VLMs then
produce language response ylanguage and the execution func-
tion ycode. Simultaneously, the keypoint module extracts
keypoints from the RoVI to generate spatiotemporal con-
straints, including a starting point p0, multiple waypoints
pi, and an endpoint pn. Finally, based on the input ycode and
the keypoint coordinates, the low-level policy executes the
corresponding actions.

5.2. VLMs for RoVI Understanding
Given the VLMs’ capabilities in visual perception, embed-
ded world knowledge, and reasoning, we use the VLMs to
interpret RoVI and translate it into a natural language re-
sponse ylanguage. The language response acts as a univer-
sal interface for human feedback, enabling verification of
VLMs’ comprehension and connecting it to downstream
low-level policies. Compared with the end-to-end poli-
cies [7, 9] directly output parameters in SE(3) action space,
ylanguage incorporates language-base action representations,
which generalize more effectively across variable tasks and
environments [5, 17, 27].

The language response is generated by VLMs with a
Chain-of-Thought (CoT) reasoning process. It includes
coarse-grained task predictions, providing high-level task
descriptions, and fine-grained planning with sub-goal se-
quences, breaking tasks into smaller steps. Each sub-goal
is subsequently converted into executable code functions
ycode, which define the necessary actions or skills for the
robotic arm, such as move() or grasp(). These func-
tions, combined with keypoint constraints, form a low-level
policy for action implementation. A comprehensive exam-
ple of the model output is provided in the appendix.

ylanguage, ycode = fθ(v,X). (2)

5.3. Keypoint Module
To decode spatiotemporal information from RoVI, v ∈ R2

in pixel space, we first decompose multi-step tasks into



single-step tasks based on color identifiers. The transition
between single-step tasks is converted into motion between
keypoints, specifically from the endpoint of the step j − 1
to the starting point of the step j. Then, a trained key-
point module, fδ , provides keypoint constraints, which in-
clude sequences of end-effector coordinates and keypoints’
semantic functionalities in manipulation such as starting
points p0 ∈ R2, waypoints pi ∈ R2, and endpoints pn ∈
R2.

We employ YOLOv8 [30] as fδ and construct a dataset
containing 2k images for its training (see details in the ap-
pendix). Compared to open-vocabulary object detection,
our strategy simplifies the detection of all objects across
different environments to identify components of the RoVI
symbols, making it less susceptible to environmental varia-
tions or distractor objects (see Experiment Section 6.4).

5.4. Keypoint-Conditioned Low-Level Policy

We propose a keypoint-conditioned low-level policy that
enables a robot to follow a sequence of target poses, de-
fined as keypoints, for manipulation tasks. These keypoints
pi ∈ R2 are extracted from action arrows in an RGB image
and mapped to 3D coordinates p′i ∈ R3 using depth data
from a RGB-D camera.

These N keypoints are then mapped to a sequence of
desired end-effector poses in SE(3) space, which is repre-
sented as {e1, e2, . . . , eN}. The initial pose e0 is obtained
using the grasp module [18] based on p0 ∈ R2. The series
of poses form the action to be executed. We categorize ac-
tions into two types: translation (e.g., move to, push, pull)
and rotation (e.g., flip, knock-down, adjust knob). At each
time step t, the robot performs:

1. State Observation: Acquire the current end-effector
pose et ∈ SE(3) and target keypoint p′i ∈ R3 from the
RGB-D camera.

2. Cost Function Minimization: Li(t): Minimize the cost
function by moving towards p′i leveraging motion plan-
ning and interpolation.

3. Keypoint Transition: If Li(t) ≤ ϵ, mark p′i as reached
and proceed to p′i+1. i accumulates until i = N , then
end the current action step.

The goal at each time step t is to minimizes Li(t):

argmin Li(t), (3)

Li(t) = αi δtrans(t) + (1− αi) δrot(t), (4)

where αi indicates the action type: αi = 1 for translation
and αi = 0 for rotation.

Translational Cost: δtrans(t) = ∥et − ei∥, where et is
the current end-effector pose and ei is the target pose, with
∥·∥ denoting the Euclidean norm.

Rotational Cost: δrot(t) = |θt − θi|, where θt is the cur-
rent rotation angle, θi is computed as:

θi = arccos

(
(vi)

⊤vi+1

∥vi∥∥vi+1∥

)
, (5)

with vi = p′i − c and vi+1 = p′i+1 − c, where c is the
rotation center.

6. Experiment

Our experiments aim to conduct in-depth research on the
following questions:

1. How does RoVI perform in generalizing over unseen en-
vironments and tasks in the real world and simulation?
(section 6.1 and 6.2)

2. How well do current VLMs understand RoVI? (section
6.3)

3. How do the components of RoVI and VIEW impact the
overall performance of the whole pipeline? (section 6.4)

Model Training. We select GPT-4o [1] and LLaVA-
13B [37] as the VLMs in VIEW to control the robotic
manipulation tasks. We also fine-tune the LLaVA-7B and
13B models [37] using the LoRA [25] on our RoVI Book
dataset, with one training epoch and a learning rate of 2e-4.
All experiments are conducted on an NVIDIA A40 GPU.

Implement Procedure. We train a YOLOv8 model [30]
to extract starting points, waypoints, and endpoints from
hand-drawn instructions, providing keypoint constraints.
These constraints are used to filter the grasp poses generated
by AnyGrasp [18] to obtain the closest one. The obtained
3D coordinates from RGB-D mapping and grasp poses are
then input into VLM-generated Python functions for code-
based low-level control.

Manipulation Tasks. We meticulously design 11 tasks:
8 in real environments and 3 in simulated settings shown
in Figure 5 and 6. For our method, all tasks and environ-
ments are previously unseen, with new objects introduced.
Our design includes 7 single-step tasks. Some involve clut-
tered environments with disturbances, such as ‘select a
desired object’ or ‘move between objects’,
requiring precise spatial alignment and trajectory-following
abilities. Additionally, there are 4 multi-stage ( Task 6-8 in
real environment, Task 3 in simulation) tasks to test further
reasoning ability for spatio-temporal dependency.

6.1. Generalization to In-the-Wild Manipulation
Real World Setting & Baselines. For real-world exper-
iments, we use two robotic arms with two-finger grip-
pers: UFACTORY X-Arm 6 and UR5. Two calibrated
RealSense D435 cameras are positioned for top-down and
third-person views. Both robotic arms operated at a 20 Hz
control frequency with an end-effector delta control mode.



Robotic Baseline
Real World

Average Robotic Baseline
Simulator

Average
1 2 3 4 5 6 7 8 1 2 3

Voxposer [27] 30 80 80 10 0 30 30 20 43.8 RT-1-X [7] 40 20 0 20
CoPa [26] 40 90 80 60 0 40 20 30 45 Octo-goal-image [43] 10 30 0 13.3

VIEW-GPT4o [1] 80 100 90 90 60 70 90 80 82.5 Octo-language [43] 10 0 0 3
VIEW-LLaVA-13B [37] (RoVI Book) 90 90 100 100 70 70 90 90 87.5 VIEW∗ 70 60 100 76.6

Table 1. Success Rate in unseen environments and unseen tasks. The numbers correspond to tasks in Figure 5 and Figure 6. VIEW∗

denotes both VIEW-GPT4o and VIEW-LLaVA 13B (RoVI Book), as their test results are identical. Bold score means the best result.

Figure 5. Robotic visual instruction is capable of generalizing to a variety of in-the-wild real-world situations, including multi-stage tasks
that require precise spatial coordination, reasoning, and spatio-temporal dependencies, even in cluttered environments with disturbances.

Figure 6. Experiment tasks in the SIMPLER [35] environment
for the comparative study of language instruction, goal image, and
visual instruction.

We compare our approach against two language-
conditioned policy baselines, CoPa [26] and VoxPoser [27],
both leveraging a GPT model for low-level policy control.
CoPa [26] additionally utilizes Set-of-Mark (SoM) [49] for
object tagging as a visual prompt. To ensure a fair compar-
ison, all methods used GPT-4o [1] as the VLM.

Evaluation Metrics for Action. We report two metrics
for assessing manipulation execution: action success rate,
measuring the percentage of tasks that meet defined goals,
and spatiotemporal alignment, evaluating the consistency
of movement trajectories and the alignment of an object’s fi-
nal spatial state with semantic goals. A 6-point Likert scale
is used for assessment (details in the appendix). Each task
is evaluated over 10 trials.

Results. Table 1 shows that Voxposer [27] and
CoPa [26] struggle with spatial precision tasks, such as
‘move the lemon close to and below the potato’ and the
‘choose a snack’ task with similar object disturbances. Both
of these two methods also failed in Task 5, indicating the

Figure 7. Performance comparison of average spatiotemporal
alignment across all methods. See supplementary materials for
detailed statistics.

difficulty of the trajectory following. This is due to the
inherent ambiguity of language-based instructions, which
provide only object-level information, whereas RoVI en-
ables pixel-level precision. In contrast, VIEW performs
well on these tasks, as its keypoint module provides spa-
tial constraints and waypoints. Unlike VoxPoser [27] and
CoPa [26], which use an open-vocabulary object detector,
VIEW’s keypoint module focuses on RoVI symbol parts,
making it less susceptible to environmental variation or dis-
tractors. This enables VIEW’s strong generalization and
robustness in real-world manipulation tasks. Compared to
other approaches that employ VLMs for temporal sequence
reasoning in embodied planning, our method also achieves
superior performance on long-horizon tasks (Task 6-8). By
decomposing multi-step tasks into individual steps guided
by color cues, we effectively reduce the complexity of tem-
poral reasoning.

6.2. Comparative Study in Simulation
Simulation Setting & Baselines. This section compares
the manipulation performance of three instruction meth-
ods—language instruction, goal-image, and RoVI—in a



VLMs w/ RoVI
Real World Simulator

1 2 3 4 5 6 7 8 Average 1 2 3 Average

Small Models 0 0 0 0 0 0 0 0 0 0 0 0 0
Claude 3.5-Sonnet [4] 100 95 0 100 90 55 50 67 70 30 100 50 60

Gemini-1.5 Pro [2] 10 100 100 100 20 95 60 57 68 0 100 0 33
GPT-4o [1] 100 100 100 40 60 90 100 55 81 100 100 90 97

LLaVA-13B [37] (RoVI Book) 9 45 0 82 0 75 14 82 38 36 82 73 64

Table 2. Task and Planning evaluation in language response. It showcases the capability of existing VLMs to comprehend RoVI. The
numbers correspond to tasks in Figure 5 and Figure 6.

Figure 8. Visual comparison of trajectory between RoVI, natural
language, and goal image policies. For each example, we sample
six successful action trajectories from 50 trials and find that only
RoVI’s end state and path are more convergent and controllable.

simulated environment. We use SAPIEN [47] as the sim-
ulator and SIMPLER [35] as the base environment.

For the simulated experiments, we evaluate our approach
against RT-1-X [7] and Octo [43], both of which are end-to-
end, language-conditioned Vision-Language-Action (VLA)
models trained on the Open X-Embodiment dataset [13].
Octo [43] additionally supports goal-image input modali-
ties. In our setup, we use the same robotic arms and back-
ground settings as in their training set and include new tasks
in cluttered environments to test generalization.

Quantitative Analysis. These three tasks are performed
in cluttered environments, where both language and goal-
image inputs face significant challenges. Long-horizon
tasks, in particular, are nearly impossible to accomplish
under such conditions. However, our approach performs
exceptionally well. These results indicate that end-to-end
vision-language-action (VLA) models struggle with gener-
alization to new tasks, while our method demonstrates ro-
bust generalization, with performance in simulation closely
aligning with real-world outcomes.

Qualitative Study. To study the potential capability of
RoVI, we delve into further qualitative comparison with
nature language and goal-image conditioned policies. As
shown in Figure 8, RoVI is the only instruction format that
effectively conveys both path information and the end state.
In contrast, the goal image policy performs well in terms of
the end state but falls short in describing movement paths.
For methods like RT-X [7] and Octo [43], the generated

Figure 9. Error breakdown of language responses. Training with
the RoVI book significantly reduces errors in action decisions and
temporal sequences (highlighted in the black box).

paths and end states lack consistency and exhibit limited
spatial precision. In the evaluated examples, RoVI demon-
strates a clear advantage in spatiotemporal alignment.

6.3. RoVI Comprehension by Modern VLMs.
We evaluate the capability of VLMs to extract semantic
meaning from RoVI in novel tasks and environments, em-
ploying in-context learning and a zero-shot approach (see
details in supplementary in-context learning).

Metrics. We evaluate ‘Task and Planning’ success rates
by assessing the accuracy of language responses using hu-
man feedback. This evaluation has two components: ‘task’,
measuring the VLMs’ comprehension of task definitions
based on RoVI and observations (e.g. ‘Open the bottom
drawer, then place the clothes inside’); and ‘planning’,
evaluating the reasoning capability of VLMs to decompose
complex RoVI tasks into sequential sub-goals. Each task
is evaluated over 10 trials. We compare our trained model
with diverse VLMs, including large-scale models: GPT-
4o [1], Gemini-1.5 Pro [2], Claude 3.5-Sonnet [4], as well
as smaller models: InternLM-XComposer2-VL-7B [16],
LLaVA-HF/LLaVA-v1.6-Mistral-7B [37], MiniGPT-4 [52],
and VIP-LLaVA 7B [11].

Results. The Table 2 demonstrates that advanced large
models (Gemini [2], GPT-4o [1], Claude [4]) exhibit a
strong ability to understand RoVI-conditioned manipula-
tion tasks through in-context learning, even without being
trained on expert datasets. In contrast, models with fewer
than 13 billion parameters fail to comprehend RoVI effec-
tively. Combining both simulation and real-world perfor-



Figure 10. Showcase of two drawing styles in modified Open X-
Embodiment dataset [13].

mance, GPT-4o [1] exhibits the best overall results. Further-
more, advanced large models generalize better in terms of
RoVI comprehension compared to smaller models trained
on the RoVI Book dataset, such as LLaVA-13B [37]. How-
ever, as the number of steps in the task increases, the large
models’ comprehension accuracy decreases. In contrast,
LLaVA-13B [37], trained on the RoVI Book dataset, per-
forms well on long-sequence task 8, indicating that the
RoVI Book dataset is effective for learning multi-step tasks
under RoVI conditions.

Error Breakdown. It is worth noting that LLaVA-
13B [37] (trained on the RoVI Book) shows a low success
rate in task and planning predictions but performs excep-
tionally well in action execution. In conjunction with Figure
9, we can conclude that the execution function maps action
and sequence errors, making it unaffected by perception er-
rors. After training on the RoVI Book, errors related to the
execution function were significantly reduced.

6.4. Ablations Study
Drawing. Analogous to how language prompts often re-
quire ‘prompt engineering’, free-form drawing can exhibit
significant variability. And hand-drawn instruction raises
another question: how can we optimize the drawing style to
enhance model comprehension? In this section, we classify
the drawing styles into two distinct categories for compari-
son to investigate their impact on VLMs’ reasoning perfor-
mance. The corresponding visualization and experiments
are shown in Figure 10 and Table 3. Our findings indicate
that the more structured geometric style yielded superior
comprehension. Further experimental details are attached
in the supplementary material.

Keypoint Module. We evaluate the proposed key-
point module, a trained YOLOv8 model [30], for spatial
constraint generation across four different RoVI tasks. We
compare it against three popular open-vocabulary detection
models [38, 40, 41], using two strategies: (1) manually in-
putting the target’s semantic information as the text prompt,
and (2) identifying and localizing arrow components (ar-
rowhead and tail). Two primary metrics are used for evalua-
tion: Euclidean distance error (measured in pixels) to assess

Model

Task Prediction + Subgoal Planning

Move Pick up / Choose Rotate Average

L G L G L G L G

GPT-4o [1] 0.6 1.0 0.9 0.9 0.2 1.0 0.57 0.97
Gemini 1.5 pro [2] 0.1 0.0 1.0 1.0 1.0 0.6 0.7 0.53

Claude 3.5 sonnet [4] 1.0 0.8 1.0 1.0 0.9 0.9 0.97 0.9
Total Average 0.57 0.6 0.97 0.97 0.7 0.83 0.74 0.8

Table 3. Comparison of drawing styles in modified Open X-
Embodiment. ‘L’ and ‘G’ denote Loose style and Geometric style
respectively. On average, the more structured geometric style of-
fers VLMs better task comprehension ability.

Task Metric GDINO [38] OWL-ViT [40] OWL-V2 [41] YOLOv8 [30]

1 MD 482.71 ± 0.00 N/A 114.18 ± 92.65 6.83 ± 0.00
mAP 0.00 ± 0.00 N/A 0.33 ± 0.47 1.00 ± 0.00

2 MD 507.35 ± 183.27 N/A 52.47 ± 61.44 19.45 ± 8.92
mAP 0.00 ± 0.00 N/A 0.57 ± 0.49 1.00 ± 0.00

3 MD 510.33 ± 183.25 153.92 ± 0.00 131.03 ± 33.43 13.27 ± 5.81
mAP 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

4 MD 751.44 ± 196.85 57.51 ± 89.85 63.28 ± 80.47 11.64 ± 4.73
mAP 0.00 ± 0.00 0.67 ± 0.47 0.64 ± 0.48 1.00 ± 0.00

Table 4. Ablation of the proposed keypoint module. The tested
tasks and RoVI are shown in the supplementary material. MD
represents mean distance.

precision, and Mean Average Precision (mAP) at a 50-pixel
threshold to measure accuracy. Results in Table 4 indicate
that, despite its smaller parameter size, the keypoint mod-
ule achieves more efficient task-relevant keypoint extraction
directly from pixel space compared to transformer-based
open-vocabulary detection models. Additional limitations
and details can be found in the supplementary material.

7. Conclusion and Future works

In this paper, we propose Robotic Visual Instruction
(RoVI), a user-friendly and spatially precise alternative to
natural language for guiding robotic tasks. To implement
RoVI, we develop a pipeline, Visual Instruction Embod-
ied Workflow (VIEW), which demonstrates strong gener-
alization and robustness across cluttered environments and
long-horizon tasks. Additionally, we meticulously create
a dataset to fine-tune VLMs for a better understanding of
RoVI and potential future edge device deployment. Abla-
tion studies also reveal the factors influencing the perfor-
mance of RoVI-conditioned policies, including RoVI com-
prehension, drawing strategies, and grounding methods.

Future works. Future research will focus on scaling up
the RoVI Book dataset and collecting a wider variety of
free-form drawn instruction. This expansion aims to equip
the model with a broader understanding of the general prin-
ciples by which humans employ visual symbols to convey
dynamic movements. On the other hand, we can more effi-
ciently train a smaller model like 7B. This will facilitate the
deployment of edge devices within our robotic system.
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